Book Image

Data Structures and Algorithms with the C++ STL

By : John Farrier
5 (2)
Book Image

Data Structures and Algorithms with the C++ STL

5 (2)
By: John Farrier

Overview of this book

While the Standard Template Library (STL) offers a rich set of tools for data structures and algorithms, navigating its intricacies can be daunting for intermediate C++ developers without expert guidance. This book offers a thorough exploration of the STL’s components, covering fundamental data structures, advanced algorithms, and concurrency features. Starting with an in-depth analysis of the std::vector, this book highlights its pivotal role in the STL, progressing toward building your proficiency in utilizing vectors, managing memory, and leveraging iterators. The book then advances to STL’s data structures, including sequence containers, associative containers, and unordered containers, simplifying the concepts of container adaptors and views to enhance your knowledge of modern STL programming. Shifting the focus to STL algorithms, you’ll get to grips with sorting, searching, and transformations and develop the skills to implement and modify algorithms with best practices. Advanced sections cover extending the STL with custom types and algorithms, as well as concurrency features, exception safety, and parallel algorithms. By the end of this book, you’ll have transformed into a proficient STL practitioner ready to tackle real-world challenges and build efficient and scalable C++ applications.
Table of Contents (30 chapters)
Free Chapter
1
Part 1: Mastering std::vector
7
Part 2: Understanding STL Data Structures
13
Part 3: Mastering STL Algorithms
19
Part 4: Creating STL-Compatible Types and Algorithms
23
Part 5: STL Data Structures and Algorithms: Under the Hood

Introduction to execution policies

Processors have transitioned from focusing on increasing the speed of individual cores to incorporating multiple cores for enhanced performance. For developers, this means the potential to execute multiple instructions concurrently across these cores, improving application efficiency and responsiveness.

This move to multi-core configurations highlights the importance of integrating parallel programming techniques. With the advent of C++17, C++ made notable progress in this domain by introducing the <execution> header.

The <execution> header– enabling parallelism in STL algorithms

Before C++17, although the STL provided a comprehensive suite of algorithms, they were executed sequentially. This sequential operation meant that STL algorithms did not fully utilize the capabilities of multi-core processors.

The <execution> header addresses this limitation. Instead of adding new algorithms, it enhances existing ones...