Book Image

Modern Distributed Tracing in .NET

By : Liudmila Molkova
Book Image

Modern Distributed Tracing in .NET

By: Liudmila Molkova

Overview of this book

As distributed systems become more complex and dynamic, their observability needs to grow to aid the development of holistic solutions for performance or usage analysis and debugging. Distributed tracing brings structure, correlation, causation, and consistency to your telemetry, thus allowing you to answer arbitrary questions about your system and creating a foundation for observability vendors to build visualizations and analytics. Modern Distributed Tracing in .NET is your comprehensive guide to observability that focuses on tracing and performance analysis using a combination of telemetry signals and diagnostic tools. You'll begin by learning how to instrument your apps automatically as well as manually in a vendor-neutral way. Next, you’ll explore how to produce useful traces and metrics for typical cloud patterns and get insights into your system and investigate functional, configurational, and performance issues. The book is filled with instrumentation examples that help you grasp how to enrich auto-generated telemetry or produce your own to get the level of detail your system needs, along with controlling your costs with sampling, aggregation, and verbosity. By the end of this book, you'll be ready to adopt and leverage tracing and other observability signals and tools and tailor them to your needs as your system evolves.
Table of Contents (23 chapters)
1
Part 1: Introducing Distributed Tracing
6
Part 2: Instrumenting .NET Applications
11
Part 3: Observability for Common Cloud Scenarios
16
Part 4: Implementing Distributed Tracing in Your Organization

Continuous observability

Observability should not be added as an afterthought when service or feature development is over. When implementing a complex feature across several services or just adding a new external dependency, we can’t rely on users telling us when it’s broken. Tests usually don’t cover every aspect and don’t represent user behavior.

If we don’t have a reliable telemetry signal, we can’t say whether the feature works or whether customers use it.

Incorporating observability into the design process

Making sure we have telemetry in place is part of feature design work. The main questions the telemetry should answer are the following:

  • Who uses this feature and how much?
  • Does it work? Does it break something else?
  • Does it work as expected? Does it improve things as expected?

If we can rely on the existing telemetry to answer these questions, awesome!

We should design instrumentation in a way that...