Book Image

Improving your C# Skills

By : Ovais Mehboob Ahmed Khan, John Callaway, Clayton Hunt, Rod Stephens
Book Image

Improving your C# Skills

By: Ovais Mehboob Ahmed Khan, John Callaway, Clayton Hunt, Rod Stephens

Overview of this book

This Learning Path shows you how to create high performing applications and solve programming challenges using a wide range of C# features. You’ll begin by learning how to identify the bottlenecks in writing programs, highlight common performance pitfalls, and apply strategies to detect and resolve these issues early. You'll also study the importance of micro-services architecture for building fast applications and implementing resiliency and security in .NET Core. Then, you'll study the importance of defining and testing boundaries, abstracting away third-party code, and working with different types of test double, such as spies, mocks, and fakes. In addition to describing programming trade-offs, this Learning Path will also help you build a useful toolkit of techniques, including value caching, statistical analysis, and geometric algorithms. This Learning Path includes content from the following Packt products: • C# 7 and .NET Core 2.0 High Performance by Ovais Mehboob Ahmed Khan • Practical Test-Driven Development using C# 7 by John Callaway, Clayton Hunt • The Modern C# Challenge by Rod Stephens
Table of Contents (26 chapters)
Title Page
Copyright and Credits
About Packt
What to Know Before Getting Started
Files and Directories
Advanced C# and .NET Features

Utilizing multiple cores of the CPU for high performance

These days, the nature of applications focuses more on connectivity, and there are cases where their operations take more time to execute. We also know that nowadays, all computers come with a multi-core processor, and using these cores effectively increases the performance of the application. Operations such as network/IO have latency issues, and the synchronous execution of the application program may often lead to a long waiting time. If the long-running tasks are executed in a separate thread or in an asynchronous manner, the resulting operation will take less time and increase responsiveness. Another benefit is performance that actually utilizes multiple cores of the processor and executes the task simultaneously. In the .NET world, we can achieve responsiveness and performance by splitting the tasks into multiple threads and using classic multithreading programming APIs, or a more simplified and advanced model known as the task...