Book Image

Artificial Intelligence By Example - Second Edition

By : Denis Rothman
Book Image

Artificial Intelligence By Example - Second Edition

By: Denis Rothman

Overview of this book

AI has the potential to replicate humans in every field. Artificial Intelligence By Example, Second Edition serves as a starting point for you to understand how AI is built, with the help of intriguing and exciting examples. This book will make you an adaptive thinker and help you apply concepts to real-world scenarios. Using some of the most interesting AI examples, right from computer programs such as a simple chess engine to cognitive chatbots, you will learn how to tackle the machine you are competing with. You will study some of the most advanced machine learning models, understand how to apply AI to blockchain and Internet of Things (IoT), and develop emotional quotient in chatbots using neural networks such as recurrent neural networks (RNNs) and convolutional neural networks (CNNs). This edition also has new examples for hybrid neural networks, combining reinforcement learning (RL) and deep learning (DL), chained algorithms, combining unsupervised learning with decision trees, random forests, combining DL and genetic algorithms, conversational user interfaces (CUI) for chatbots, neuromorphic computing, and quantum computing. By the end of this book, you will understand the fundamentals of AI and have worked through a number of examples that will help you develop your AI solutions.
Table of Contents (23 chapters)
21
Other Books You May Enjoy
22
Index

Abstract Image Classification with Convolutional Neural Networks (CNNs)

The invention of convolutional neural networks (CNNs) applied to vision represents by far one of the most innovative achievements in the history of applied mathematics. With their multiple layers (visible and hidden), CNNs have brought artificial intelligence from machine learning to deep learning.

In Chapter 8, Solving the XOR Problem with a Feedforward Neural Network, we saw that f(x, w) is the building block of any neural network. A function f will transform an input x with weights w to produce an output. This output can be used as such or fed into another layer. In this chapter, we will generalize this principle and introduce several layers. At the same time, we will use datasets with images. We will have a dataset for training and a dataset for validation to confirm that our model works.

A CNN relies on two basic tools of linear algebra: kernels and functions, applying...