Book Image

Real-Time 3D Graphics with WebGL 2 - Second Edition

By : Farhad Ghayour, Diego Cantor
5 (1)
Book Image

Real-Time 3D Graphics with WebGL 2 - Second Edition

5 (1)
By: Farhad Ghayour, Diego Cantor

Overview of this book

As highly interactive applications have become an increasingly important part of the user experience, WebGL is a unique and cutting-edge technology that brings hardware-accelerated 3D graphics to the web. Packed with 80+ examples, this book guides readers through the landscape of real-time computer graphics using WebGL 2. Each chapter covers foundational concepts in 3D graphics programming with various implementations. Topics are always associated with exercises for a hands-on approach to learning. This book presents a clear roadmap to learning real-time 3D computer graphics with WebGL 2. Each chapter starts with a summary of the learning goals for the chapter, followed by a detailed description of each topic. The book offers example-rich, up-to-date introductions to a wide range of essential 3D computer graphics topics, including rendering, colors, textures, transformations, framebuffers, lights, surfaces, blending, geometry construction, advanced techniques, and more. With each chapter, you will "level up" your 3D graphics programming skills. This book will become your trustworthy companion in developing highly interactive 3D web applications with WebGL and JavaScript.
Table of Contents (14 chapters)

Elements in a WebGL Application

WebGL, like other 3D graphics libraries, comprises many common 3D elements. These fundamental elements will be covered, chapter-by-chapter, throughout this book.

Some of these common elements include the following:

  • canvas: It is the placeholder where our scene is rendered. It is a standard HTML5 element and as such, can be accessed using the Document Object Model (DOM).
  • Objects: These are the 3D entities that make up the scene. These entities are composed of triangles. In the following chapters, we will see how WebGL handles and renders geometries using buffers.
  • Lights: Nothing in a 3D world can be seen without lights. In later chapters, we will learn that WebGL uses shaders to model lights in the scene. We will see how 3D objects reflect or absorb light according to the laws of physics. We will also discuss different light models to visualize our objects.
  • Camera: canvas acts as the viewport to the 3D world. We see and explore a 3D scene through it. In the following chapters, we will understand the different matrix operations that are required to produce a view perspective. We will understand how these operations can be modeled as a camera.

This chapter will cover the first element of our list: canvas. The following sections will help us understand how to create a canvas element and how to set up a WebGL context.