Book Image

Hands-On Docker for Microservices with Python

By : Jaime Buelta
Book Image

Hands-On Docker for Microservices with Python

By: Jaime Buelta

Overview of this book

Microservices architecture helps create complex systems with multiple, interconnected services that can be maintained by independent teams working in parallel. This book guides you on how to develop these complex systems with the help of containers. You’ll start by learning to design an efficient strategy for migrating a legacy monolithic system to microservices. You’ll build a RESTful microservice with Python and learn how to encapsulate the code for the services into a container using Docker. While developing the services, you’ll understand how to use tools such as GitHub and Travis CI to ensure continuous delivery (CD) and continuous integration (CI). As the systems become complex and grow in size, you’ll be introduced to Kubernetes and explore how to orchestrate a system of containers while managing multiple services. Next, you’ll configure Kubernetes clusters for production-ready environments and secure them for reliable deployments. In the concluding chapters, you’ll learn how to detect and debug critical problems with the help of logs and metrics. Finally, you’ll discover a variety of strategies for working with multiple teams dealing with different microservices for effective collaboration. By the end of this book, you’ll be able to build production-grade microservices as well as orchestrate a complex system of services using containers.
Table of Contents (19 chapters)
Free Chapter
1
Section 1: Introduction to Microservices
3
Section 2: Designing and Operating a Single Service – Creating a Docker Container
7
Section 3:Working with Multiple Services – Operating the System through Kubernetes
13
Section 4: Production-Ready System – Making It Work in Real-Life Environments

Setting up multiple environments

The ease of creating, copying, and removing namespaces under Kubernetes greatly reduces the previous burden of keeping multiple copies of environments to replicate the underlying infrastructure. You can use this to your advantage.

Based on the GitOps principles we mentioned earlier, we can define new namespaces to generate a new cluster. We can either use another branch (for example, use the master branch for the production cluster and demo for the demo cluster) or copy the files containing the cluster definition and change the namespaces.

You can use different physical Kubernetes clusters for different purposes. It's better to leave the production cluster as not being shared with any other environment to reduce risks. However, every other environment could live in the same cluster, which won't affect external customers.

Some feature...