Book Image

Scientific Computing with Python 3

By : Claus Führer, Jan Erik Solem, Olivier Verdier
Book Image

Scientific Computing with Python 3

By: Claus Führer, Jan Erik Solem, Olivier Verdier

Overview of this book

Python can be used for more than just general-purpose programming. It is a free, open source language and environment that has tremendous potential for use within the domain of scientific computing. This book presents Python in tight connection with mathematical applications and demonstrates how to use various concepts in Python for computing purposes, including examples with the latest version of Python 3. Python is an effective tool to use when coupling scientific computing and mathematics and this book will teach you how to use it for linear algebra, arrays, plotting, iterating, functions, polynomials, and much more.
Table of Contents (23 chapters)
Scientific Computing with Python 3
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Acknowledgement
Preface
References

What are symbolic computations?


All computations we did so far in this book were so-called numeric computations. These were a sequence of operations mainly on floating-point numbers. It is the nature of numeric computations that the result is an approximation of the exact solution.

Symbolic computations operate on formulas or symbols by transforming them as taught in algebra or calculus into other formulas. The last step of these transformations might then require that numbers are inserted and a numeric evaluation is performed.

We illustrate the difference by computing this definite integral:

Symbolically this expression can be transformed by considering the primitive function of the integrand:

We now obtain a formula for the definite integral by inserting the integral bounds:

This is called a closed-form expression for the integral. Very few mathematical problems have a solution that can be given in a closed-form expression. It is the exact value of the integral without any approximation...