Book Image

Scientific Computing with Python 3

By : Claus Führer, Jan Erik Solem, Olivier Verdier
Book Image

Scientific Computing with Python 3

By: Claus Führer, Jan Erik Solem, Olivier Verdier

Overview of this book

Python can be used for more than just general-purpose programming. It is a free, open source language and environment that has tremendous potential for use within the domain of scientific computing. This book presents Python in tight connection with mathematical applications and demonstrates how to use various concepts in Python for computing purposes, including examples with the latest version of Python 3. Python is an effective tool to use when coupling scientific computing and mathematics and this book will teach you how to use it for linear algebra, arrays, plotting, iterating, functions, polynomials, and much more.
Table of Contents (23 chapters)
Scientific Computing with Python 3
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Acknowledgement
Preface
References

Manual testing


During the development of code, you do a lot of small tests in order to test its functionality. This could be called manual testing. Typically, you would test if a given function does what it is supposed to do, by manually testing the function in an interactive environment. For instance, suppose that you implement the bisection algorithm. It is an algorithm that finds a zero (root) of a scalar non-linear function. To start the algorithm, an interval has to be given with the property that the function takes different signs on the interval boundaries, see Exercise 4, Chapter 7, Functions, for more information.

You will then test an implementation of that algorithm, typically by checking that:

  • A solution is found when the function has opposite signs at the interval boundaries
  • An exception is raised when the function has the same sign at the interval boundaries

Manual testing, as necessary as it may seem to be, is unsatisfactory. Once you have convinced yourself that the code does...