Book Image

Building Machine Learning Systems with Python - Third Edition

By : Luis Pedro Coelho, Willi Richert, Matthieu Brucher
Book Image

Building Machine Learning Systems with Python - Third Edition

By: Luis Pedro Coelho, Willi Richert, Matthieu Brucher

Overview of this book

Machine learning enables systems to make predictions based on historical data. Python is one of the most popular languages used to develop machine learning applications, thanks to its extensive library support. This updated third edition of Building Machine Learning Systems with Python helps you get up to speed with the latest trends in artificial intelligence (AI). With this guide’s hands-on approach, you’ll learn to build state-of-the-art machine learning models from scratch. Complete with ready-to-implement code and real-world examples, the book starts by introducing the Python ecosystem for machine learning. You’ll then learn best practices for preparing data for analysis and later gain insights into implementing supervised and unsupervised machine learning techniques such as classification, regression and clustering. As you progress, you’ll understand how to use Python’s scikit-learn and TensorFlow libraries to build production-ready and end-to-end machine learning system models, and then fine-tune them for high performance. By the end of this book, you’ll have the skills you need to confidently train and deploy enterprise-grade machine learning models in Python.
Table of Contents (17 chapters)
Free Chapter
1
Getting Started with Python Machine Learning

The Iris dataset

The Iris dataset is a classic dataset from the 1930s; it is one of the first modern examples of statistical classification.

The dataset is a collection of morphological measurements of several iris flowers. These measurements will enable us to distinguish multiple species of flower. Today, species are identified by their DNA fingerprints, but in the 1930s, DNA's role in genetics had not yet been discovered.

The following four attributes of each plant were measured:

  • Sepal length
  • Sepal width
  • Petal length
  • Petal width

In general, we call the individual numeric measurements we use to describe our data features. These features can be directly measured or computed from intermediate data.

This dataset has four features. Additionally, for each plant, the species is recorded. The problem we want to solve is: "given these examples, if we see a new flower out...