Book Image

Building Machine Learning Systems with Python - Third Edition

By : Luis Pedro Coelho, Willi Richert, Matthieu Brucher
Book Image

Building Machine Learning Systems with Python - Third Edition

By: Luis Pedro Coelho, Willi Richert, Matthieu Brucher

Overview of this book

Machine learning enables systems to make predictions based on historical data. Python is one of the most popular languages used to develop machine learning applications, thanks to its extensive library support. This updated third edition of Building Machine Learning Systems with Python helps you get up to speed with the latest trends in artificial intelligence (AI). With this guide’s hands-on approach, you’ll learn to build state-of-the-art machine learning models from scratch. Complete with ready-to-implement code and real-world examples, the book starts by introducing the Python ecosystem for machine learning. You’ll then learn best practices for preparing data for analysis and later gain insights into implementing supervised and unsupervised machine learning techniques such as classification, regression and clustering. As you progress, you’ll understand how to use Python’s scikit-learn and TensorFlow libraries to build production-ready and end-to-end machine learning system models, and then fine-tune them for high performance. By the end of this book, you’ll have the skills you need to confidently train and deploy enterprise-grade machine learning models in Python.
Table of Contents (17 chapters)
Free Chapter
1
Getting Started with Python Machine Learning

Summary

In this chapter, we started with the oldest trick in the book: ordinary least squares regression. Although centuries old, it is sometimes still the best solution for regression. However, we also saw more modern approaches that avoid overfitting and can give us better results, especially when we have a large number of features. We used Ridge, Lasso, and ElasticNets; these are state-of-the-art methods for regression.

We saw, once again, the danger of relying on training errors to estimate generalization: it can be an overly optimistic estimate to the point where our model has zero training errors, but we know that it is completely useless. When thinking through these issues, we were led on to two-level cross-validation, an important area that many in the field still have not completely internalized.

Throughout this chapter, we were able to rely on scikit-learn to support...