Book Image

Building Machine Learning Systems with Python - Third Edition

By : Luis Pedro Coelho, Willi Richert, Matthieu Brucher
Book Image

Building Machine Learning Systems with Python - Third Edition

By: Luis Pedro Coelho, Willi Richert, Matthieu Brucher

Overview of this book

Machine learning enables systems to make predictions based on historical data. Python is one of the most popular languages used to develop machine learning applications, thanks to its extensive library support. This updated third edition of Building Machine Learning Systems with Python helps you get up to speed with the latest trends in artificial intelligence (AI). With this guide’s hands-on approach, you’ll learn to build state-of-the-art machine learning models from scratch. Complete with ready-to-implement code and real-world examples, the book starts by introducing the Python ecosystem for machine learning. You’ll then learn best practices for preparing data for analysis and later gain insights into implementing supervised and unsupervised machine learning techniques such as classification, regression and clustering. As you progress, you’ll understand how to use Python’s scikit-learn and TensorFlow libraries to build production-ready and end-to-end machine learning system models, and then fine-tune them for high performance. By the end of this book, you’ll have the skills you need to confidently train and deploy enterprise-grade machine learning models in Python.
Table of Contents (17 chapters)
Free Chapter
1
Getting Started with Python Machine Learning

Sketching our roadmap

Dimensionality reduction can be roughly grouped into feature selection and feature projection methods. We have already employed some kind of feature selection in almost every chapter so far when we invented, analyzed, and then probably dropped some features. In this chapter, we will present some ways that use statistical methods—namely correlation and mutual information—to be able to do so in vast feature spaces. Feature projection tries to transform the original feature space into a lower-dimensional feature space. This is especially useful when we cannot get rid of features using selection methods, but we still have too many features for our learner. We will demonstrate this using principal component analysis (PCA), linear discriminant analysis (LDA), and multidimensional scaling (MDS).