Book Image

Data Cleaning and Exploration with Machine Learning

By : Michael Walker
Book Image

Data Cleaning and Exploration with Machine Learning

By: Michael Walker

Overview of this book

Many individuals who know how to run machine learning algorithms do not have a good sense of the statistical assumptions they make and how to match the properties of the data to the algorithm for the best results. As you start with this book, models are carefully chosen to help you grasp the underlying data, including in-feature importance and correlation, and the distribution of features and targets. The first two parts of the book introduce you to techniques for preparing data for ML algorithms, without being bashful about using some ML techniques for data cleaning, including anomaly detection and feature selection. The book then helps you apply that knowledge to a wide variety of ML tasks. You’ll gain an understanding of popular supervised and unsupervised algorithms, how to prepare data for them, and how to evaluate them. Next, you’ll build models and understand the relationships in your data, as well as perform cleaning and exploration tasks with that data. You’ll make quick progress in studying the distribution of variables, identifying anomalies, and examining bivariate relationships, as you focus more on the accuracy of predictions in this book. By the end of this book, you’ll be able to deal with complex data problems using unsupervised ML algorithms like principal component analysis and k-means clustering.
Table of Contents (23 chapters)
1
Section 1 – Data Cleaning and Machine Learning Algorithms
5
Section 2 – Preprocessing, Feature Selection, and Sampling
9
Section 3 – Modeling Continuous Targets with Supervised Learning
13
Section 4 – Modeling Dichotomous and Multiclass Targets with Supervised Learning
19
Section 5 – Clustering and Dimensionality Reduction with Unsupervised Learning

Implementing DBSCAN clustering

DBSCAN is a very flexible approach to clustering. We just need to specify a value for ɛ, also referred to as eps. As we have discussed, the ɛ value determines the size of the ɛ-neighborhood around an instance. The minimum samples hyperparameter indicates how many instances around an instance are needed for it to be considered a core instance.

Note

We use DBSCAN to cluster the same income gap data that we worked with in the previous section.

Let’s build a DBSCAN clustering model:

  1. We start by loading familiar libraries, plus the DBSCAN module:
    import pandas as pd
    from sklearn.preprocessing import MinMaxScaler
    from sklearn.pipeline import make_pipeline
    from sklearn.cluster import DBSCAN
    from sklearn.impute import KNNImputer
    from sklearn.metrics import silhouette_score
    import matplotlib.pyplot as plt
    import os
    import sys
    sys.path.append(os.getcwd() + "/helperfunctions")
  2. We import the code to load and...