Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying OpenVPN 2 Cookbook
  • Table Of Contents Toc
OpenVPN 2 Cookbook

OpenVPN 2 Cookbook

4.1 (12)
close
close
OpenVPN 2 Cookbook

OpenVPN 2 Cookbook

4.1 (12)

Overview of this book

Table of Contents (19 chapters)
close
close
OpenVPN 2 Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1
Index

Shortest setup possible


This recipe will explain the shortest setup possible when using OpenVPN. For this setup two computers are used that are connected over a network (LAN or Internet). We will use both a TUN-style network and a TAP-style network and will focus on the differences between them. A TUN device is used mostly for VPN tunnels where only IP-traffic is used. A TAP device allows full Ethernet frames to be passed over the OpenVPN tunnel, hence providing support for non-IP based protocols such as IPX and AppleTalk.

While this may seem useless at first glance, it can be very useful to quickly test whether OpenVPN can connect to a remote system.

Getting ready

Install OpenVPN 2.0 or higher on two computers. Make sure the computers are connected over a network. For this recipe, the server computer was running CentOS 5 Linux and OpenVPN 2.1.1 and the client was running Windows XP SP3 and OpenVPN 2.1.1.

How to do it...

  1. We launch the server (listening)-side OpenVPN process for the TUN-style network:

    [root@server]# openvpn --ifconfig 10.200.0.1 10.200.0.2 \
    --dev tun
    

    Tip

    The above command should be entered as a single line. The character '\' is used to denote the fact that the command continues on the next line.

  2. Then we launch the client-side OpenVPN process:

        [WinClient] C:\>"\Program Files\OpenVPN\bin\openvpn.exe" \
        --ifconfig 10.200.0.2 10.200.0.1 --dev tun \
                --remote openvpnserver.example.com
    

    The following screenshot shows how a connection is established:

    As soon as the connection is established, we can ping the other end of the tunnel.

  3. Next, we stop the tunnel by pressing the F4 function key in the Command window and we restart both ends of the tunnel using the TAP device:

  4. We launch the server (listening)-side OpenVPN process for the TAP-style network:

        [root@server]# openvpn --ifconfig 10.200.0.1 255.255.255.0 \
                --dev tap 
    
  5. Then we launch the client-side OpenVPN process:

        [WinClient] C:\>"\Program Files\OpenVPN\bin\openvpn.exe" \
                --ifconfig 10.200.0.2 255.255.255.0 --dev tap \
                --remote openvpnserver.example.com
    

The connection is established and we can again ping the other end of the tunnel.

How it works...

The server listens on UDP port 1194, which is the OpenVPN default port for incoming connections. The client connects to the server on this port. After the initial handshake, the server configures the first available TUN device with IP address 10.200.0.1 and it expects the remote end (Peer address) to be 10.200.0.2.

The client does the opposite: after the initial handshake, the first TUN or TAP-Win32 device is configured with IP address 10.200.0.2. It expects the remote end (Peer address) to be 10.200.0.1. After this, the VPN is established.

In case of a TAP-style network, the server configures the first available TAP device with the IP address 10.200.0.01 and netmask 255.255.255.0. Similarly, the client is configured with IP address 10.200.0.2 and netmask 255.255.255.0.

Note

Notice the warning:

******* WARNING *******: all encryption and authentication features disabled -- all data will be tunnelled as cleartext

Here, the data is not secure: all the data that is sent over the VPN tunnel can be read!

There's more...

Using the TCP protocol

In the previous example, we chose the UDP protocol. For this example, it would not have made any difference if we had chosen the TCP protocol, provided that we do that on the server side (the side without --remote):

[root@server]# openvpn --ifconfig 10.200.0.1 10.200.0.2 \
    –-dev tun --proto tcp-server

And also on the client side:

[root@server]# openvpn --ifconfig 10.200.0.2 10.200.0.1 \
    --dev tun --proto tcp-client

Forwarding non-IP traffic over the tunnel

It is now possible to run non-IP traffic over the tunnel. For example, if AppleTalk is configured correctly on both sides, we can query a remote host using the aecho command:

aecho openvpnserver
22 bytes from 65280.1: aep_seq=0. time=26. ms
22 bytes from 65280.1: aep_seq=1. time=26. ms
22 bytes from 65280.1: aep_seq=2. time=27. ms

A tcpdump -nnel -i tap0 shows that the type of traffic is indeed non-IP based AppleTalk.

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
OpenVPN 2 Cookbook
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon