Book Image

Mastering pfSense - Second Edition

By : David Zientara
Book Image

Mastering pfSense - Second Edition

By: David Zientara

Overview of this book

pfSense has the same reliability and stability as even the most popular commercial firewall offerings on the market – but, like the very best open-source software, it doesn’t limit you. You’re in control – you can exploit and customize pfSense around your security needs. Mastering pfSense - Second Edition, covers features that have long been part of pfSense such as captive portal, VLANs, traffic shaping, VPNs, load balancing, Common Address Redundancy Protocol (CARP), multi-WAN, and routing. It also covers features that have been added with the release of 2.4, such as support for ZFS partitions and OpenVPN 2.4. This book takes into account the fact that, in order to support increased cryptographic loads, pfSense version 2.5 will require a CPU that supports AES-NI. The second edition of this book places more of an emphasis on the practical side of utilizing pfSense than the previous edition, and, as a result, more examples are provided which show in step-by-step fashion how to implement many features.
Table of Contents (15 chapters)

Hardware requirements and sizing guidelines

Once you have decided where to deploy pfSense on your network, you should have a clearer idea of what your hardware requirements are. As a minimum, you will need a CPU, motherboard, memory (RAM), some form of disk storage, and at least two network interfaces (unless you are opting for a router on a stick setup, in which case you only need one network interface). You may also need one or more optional interfaces.

Minimum hardware requirements

The starting point for our discussion on hardware requirements is the pfSense minimum specifications. As of January 2018, the minimum hardware requirements are as follows (these specifications are from the official pfSense site, https://www.pfsense.org):

  • CPU – 500 MHz (1 GHz recommended)
  • RAM – 512 MB (1 GB recommended)

pfSense requires a 64-bit Intel (x86-64) or AMD (amd64) CPU. You should also use a CPU that supports the AES-NI instruction set extensions (or another hardware crypto offload), as such a CPU will be required, starting with version 2.5. There are three separate images provided for these architectures: CD, CD on a USB memstick, and an image for ARM-based Netgate systems. The active default console for the CD and CD on USB memstick images is VGA, while the active default console for the Netgate image is serial. The NanoBSD images (for embedded systems, which enabled the serial console by default) have been deprecated with the release of version 2.4. The serial console can be enabled on images which default to VGA via the web GUI under System | Advanced.

A pfSense installation requires at least 1 GB of disk space. If you are installing on an embedded device, you can access the console either by a serial or VGA port. A step-by-step installation guide for the pfSense Live CD can be found on the official pfSense website at: https://doc.pfsense.org/index.php/Installing_pfSense.

Version 2.3 eliminated the Live CD, which allowed you to try out pfSense without installing it onto other media. If you really want to use the Live CD, however, you could use a pre-2.3 image (version 2.2.6 or earlier). You can always upgrade to the latest version of pfSense after installation.

Installation onto either a hard disk drive (HDD) or a solid-state drive (SSD) is the most common option for a full install of pfSense, whereas embedded installs typically use CF, SD, or USB media. A full install of the current version of pfSense will fit onto a 1 GB drive, but will leave little room for installation of packages or for log files. Any activity that requires caching, such as running a proxy server, will also require additional disk space.

The last installation option in the table is installation onto an embedded system using the Netgate ADI image. Netgate currently sells several ARM-based systems such as the SG-3100, which is advertised as an appliance that can be used in many deployment scenarios, including as a firewall, LAN or WAN router, VPN appliance, and DHCP or DNS server. It is targeted towards small and medium-sized businesses and may appeal to home and business users seeking a reliable firewall appliance with a low total cost of ownership. Storage (without upgrading) is limited to 8 GB of eMMC Flash, which would limit which packages could be installed. Another Netgate option is the SG-1000, which is a bare bones router with only 2 Ethernet ports, 512 MB of RAM and 4 GB of eMMC Flash.