Book Image

Python Machine Learning (Wiley)

By : Wei-Meng Lee
Book Image

Python Machine Learning (Wiley)

By: Wei-Meng Lee

Overview of this book

With computing power increasing exponentially and costs decreasing at the same time, this is the best time to learn machine learning using Python. Machine learning tasks that once required enormous processing power are now possible on desktop machines. Python Machine Learning begins by covering some fundamental libraries used in Python that make machine learning possible. You'll learn how to manipulate arrays of numbers with NumPy and use pandas to deal with tabular data. Once you have a firm foundation in the basics, you'll explore machine learning using Python and the scikit-learn libraries. You'll learn how to visualize data by plotting different types of charts and graphs using the matplotlib library. You'll gain a solid understanding of how the various machine learning algorithms work behind the scenes. The later chapters explore the common machine learning algorithms, such as regression, clustering, and classification, and discuss how to deploy the models that you have built, so that they can be used by client applications running on mobile and desktop devices. By the end of the book, you'll have all the knowledge you need to begin machine learning using Python.
Table of Contents (16 chapters)
Free Chapter
1
Cover
2
Introduction
11
CHAPTER 9: Supervised Learning—Classification Using K‐Nearest Neighbors (KNN)
15
Index
16
End User License Agreement

Case Study

For this case study, we are going to help predict the likelihood of a person being diagnosed with diabetes based on several diagnostic measurements of that person.

The dataset that you will be using in this chapter is from this database: https://www.kaggle.com/uciml/pima‐indians‐diabetes‐database. This dataset contains several medical independent predictors and one target. Its features consist of the following:

  • Pregnancies: Number of times pregnant
  • Glucose: Plasma glucose concentration after 2 hours in an oral glucose tolerance test
  • BloodPressure: Diastolic blood pressure (mm Hg)
  • SkinThickness: Triceps skin fold thickness (mm)
  • Insulin: 2‐Hour serum insulin (mu U/ml)
  • BMI: Body mass index (weight in kg/(height in m)^2)
  • DiabetesPedigreeFunction: Diabetes pedigree function
  • Age: Age (years)
  • Outcome: 0 (non‐diabetic) or 1 (diabetic)

The dataset has 768 records, and all patients are females at least 21 years of age and of Pima Indian descent.

...