Book Image

Python Machine Learning (Wiley)

By : Wei-Meng Lee
Book Image

Python Machine Learning (Wiley)

By: Wei-Meng Lee

Overview of this book

With computing power increasing exponentially and costs decreasing at the same time, this is the best time to learn machine learning using Python. Machine learning tasks that once required enormous processing power are now possible on desktop machines. Python Machine Learning begins by covering some fundamental libraries used in Python that make machine learning possible. You'll learn how to manipulate arrays of numbers with NumPy and use pandas to deal with tabular data. Once you have a firm foundation in the basics, you'll explore machine learning using Python and the scikit-learn libraries. You'll learn how to visualize data by plotting different types of charts and graphs using the matplotlib library. You'll gain a solid understanding of how the various machine learning algorithms work behind the scenes. The later chapters explore the common machine learning algorithms, such as regression, clustering, and classification, and discuss how to deploy the models that you have built, so that they can be used by client applications running on mobile and desktop devices. By the end of the book, you'll have all the knowledge you need to begin machine learning using Python.
Table of Contents (16 chapters)
Free Chapter
CHAPTER 9: Supervised Learning—Classification Using K‐Nearest Neighbors (KNN)
End User License Agreement

Introduction to Machine Learning

Welcome to Python Machine Learning! The fact that you are reading this book is a clear indication of your interest in this very interesting and exciting topic.

This book covers machine learning, one of the hottest programming topics in more recent years. Machine learning (ML) is a collection of algorithms and techniques used to design systems that learn from data. These systems are then able to perform predictions or deduce patterns from the supplied data.

With computing power increasing exponentially and prices decreasing simultaneously, there is no better time for machine learning. Machine learning tasks that usually require huge processing power are now possible on desktop machines. Nevertheless, machine learning is not for the faint of heart—it requires a good foundation in mathematics, statistics, as well as programming knowledge. The majority of the books in the market on machine learning go into too much detail, which often leaves...