Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Python Data Analysis
  • Table Of Contents Toc
Mastering Python Data Analysis

Mastering Python Data Analysis

By : Vilhelm Persson
5 (1)
close
close
Mastering Python Data Analysis

Mastering Python Data Analysis

5 (1)
By: Vilhelm Persson

Overview of this book

Python, a multi-paradigm programming language, has become the language of choice for data scientists for data analysis, visualization, and machine learning. Ever imagined how to become an expert at effectively approaching data analysis problems, solving them, and extracting all of the available information from your data? Well, look no further, this is the book you want! Through this comprehensive guide, you will explore data and present results and conclusions from statistical analysis in a meaningful way. You’ll be able to quickly and accurately perform the hands-on sorting, reduction, and subsequent analysis, and fully appreciate how data analysis methods can support business decision-making. You’ll start off by learning about the tools available for data analysis in Python and will then explore the statistical models that are used to identify patterns in data. Gradually, you’ll move on to review statistical inference using Python, Pandas, and SciPy. After that, we’ll focus on performing regression using computational tools and you’ll get to understand the problem of identifying clusters in data in an algorithmic way. Finally, we delve into advanced techniques to quantify cause and effect using Bayesian methods and you’ll discover how to use Python’s tools for supervised machine learning.
Table of Contents (10 chapters)
close
close

Chapter 6. Bayesian Methods

Bayesian inference is a different paradigm for statistics; it is not a method or algorithm such as cluster finding or linear regression. It stands next to classical statistical analysis. Everything that we have done so far in this book, and everything that you can do in classical (or frequentist) statistical analysis, you can do in Bayesian statistics. The main difference between frequentist (classical) and Bayesian statistics is that while frequentist assumes that the model parameters are fixed, Bayesian assumes that they have a range, a distribution. Thus, from the frequentist approach, it is easy to create point estimates—mean, variance, or fixed model parameters—directly from the data. The point estimates are unique to the data; each new dataset needs new point estimates.

In this chapter, we will cover the following topics:

  • Examples of Bayesian analysis: one where we try to identify a switch point in a time series and another with linear...
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Mastering Python Data Analysis
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon