Book Image

Advanced Machine Learning with Python

Book Image

Advanced Machine Learning with Python

Overview of this book

Designed to take you on a guided tour of the most relevant and powerful machine learning techniques in use today by top data scientists, this book is just what you need to push your Python algorithms to maximum potential. Clear examples and detailed code samples demonstrate deep learning techniques, semi-supervised learning, and more - all whilst working with real-world applications that include image, music, text, and financial data. The machine learning techniques covered in this book are at the forefront of commercial practice. They are applicable now for the first time in contexts such as image recognition, NLP and web search, computational creativity, and commercial/financial data modeling. Deep Learning algorithms and ensembles of models are in use by data scientists at top tech and digital companies, but the skills needed to apply them successfully, while in high demand, are still scarce. This book is designed to take the reader on a guided tour of the most relevant and powerful machine learning techniques. Clear descriptions of how techniques work and detailed code examples demonstrate deep learning techniques, semi-supervised learning and more, in real world applications. We will also learn about NumPy and Theano. By this end of this book, you will learn a set of advanced Machine Learning techniques and acquire a broad set of powerful skills in the area of feature selection & feature engineering.
Table of Contents (17 chapters)
Advanced Machine Learning with Python
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Chapter Code Requirements
Index

Summary


In this chapter, we've reviewed three techniques with a broad range of applications for preprocessing and dimensionality reduction. In doing so, you learned a lot about an unfamiliar dataset.

We started out by applying PCA, a widely-utilized dimensionality reduction technique, to help us understand and visualize a high-dimensional dataset. We then followed up by clustering the data using k-means clustering, identifying means of improving and measuring our k-means analysis through performance metrics, the elbow method, and cross-validation. We found that k-means on the digits dataset, taken as is, didn't deliver exceptional results. This was due to class overlap that we spotted through PCA. We overcame this weakness by applying PCA as a preprocess to improve our subsequent clustering results.

Finally, we developed an SOM algorithm that delivered a cleaner separation of the digit classes than PCA.

Having learned some key basics around unsupervised learning techniques and analytical methodology, let's dive into the use of some more powerful unsupervised learning algorithms.