Book Image

Advanced Machine Learning with Python

Book Image

Advanced Machine Learning with Python

Overview of this book

Designed to take you on a guided tour of the most relevant and powerful machine learning techniques in use today by top data scientists, this book is just what you need to push your Python algorithms to maximum potential. Clear examples and detailed code samples demonstrate deep learning techniques, semi-supervised learning, and more - all whilst working with real-world applications that include image, music, text, and financial data. The machine learning techniques covered in this book are at the forefront of commercial practice. They are applicable now for the first time in contexts such as image recognition, NLP and web search, computational creativity, and commercial/financial data modeling. Deep Learning algorithms and ensembles of models are in use by data scientists at top tech and digital companies, but the skills needed to apply them successfully, while in high demand, are still scarce. This book is designed to take the reader on a guided tour of the most relevant and powerful machine learning techniques. Clear descriptions of how techniques work and detailed code examples demonstrate deep learning techniques, semi-supervised learning and more, in real world applications. We will also learn about NumPy and Theano. By this end of this book, you will learn a set of advanced Machine Learning techniques and acquire a broad set of powerful skills in the area of feature selection & feature engineering.
Table of Contents (17 chapters)
Advanced Machine Learning with Python
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Chapter Code Requirements
Index

Chapter 3. Stacked Denoising Autoencoders

In this chapter, we'll continue building our skill with deep architectures by applying Stacked Denoising Autoencoders (SdA) to learn feature representations for high-dimensional input data.

We'll start, as before, by gaining a solid understanding of the theory and concepts that underpin autoencoders. We'll identify related techniques and call out the strengths of autoencoders as part of your data science toolkit. We'll discuss the use of Denoising Autoencoders (dA), a variation of the algorithm that introduces stochastic corruption to the input data, obliging the autoencoder to decorrupt the input and, in so doing, build a more effective feature representation.

We'll follow up on theory, as before, by walking through the code for a dA class, linking theory and implementation details to build a strong understanding of the technique.

At this point, we'll take a journey very similar to that taken in the preceding chapter—by stacking dA, we'll create a...