Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Spark for Data Science
  • Table Of Contents Toc
Spark for Data Science

Spark for Data Science

By : Duvvuri, Singhal
close
close
Spark for Data Science

Spark for Data Science

By: Duvvuri, Singhal

Overview of this book

This is the era of Big Data. The words ‘Big Data’ implies big innovation and enables a competitive advantage for businesses. Apache Spark was designed to perform Big Data analytics at scale, and so Spark is equipped with the necessary algorithms and supports multiple programming languages. Whether you are a technologist, a data scientist, or a beginner to Big Data analytics, this book will provide you with all the skills necessary to perform statistical data analysis, data visualization, predictive modeling, and build scalable data products or solutions using Python, Scala, and R. With ample case studies and real-world examples, Spark for Data Science will help you ensure the successful execution of your data science projects.
Table of Contents (12 chapters)
close
close

Datasets


Apache Spark Datasets are an extension of the DataFrame API that provide a type-safe object-oriented programming interface. This API was first introduced in the 1.6 release. Spark 2.0 version brought out unification of DataFrame and Dataset APIs. DataFrame becomes a generic, untyped Dataset; or a Dataset is a DataFrame with an added structure. The term "structure" in this context refers to a pattern or an organization of underlying data, more like a table schema in RDBMS parlance. The structure imposes a limit on what can be expressed or contained in the underlying data. This in turn enables better optimizations in memory organization as well as physical execution. Compile-time type checking leads to catching errors earlier than during runtime. For example, a type mismatch in a SQL comparison does not get caught until runtime, whereas it would be caught during compile time itself if it were expressed as a sequence of operations on Datasets. However, the inherent dynamic nature of...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Spark for Data Science
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon