Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Hands-On Data Science and Python Machine Learning
  • Table Of Contents Toc
Hands-On Data Science and Python Machine Learning

Hands-On Data Science and Python Machine Learning

By : Frank Kane
3.8 (4)
close
close
Hands-On Data Science and Python Machine Learning

Hands-On Data Science and Python Machine Learning

3.8 (4)
By: Frank Kane

Overview of this book

Join Frank Kane, who worked on Amazon and IMDb’s machine learning algorithms, as he guides you on your first steps into the world of data science. Hands-On Data Science and Python Machine Learning gives you the tools that you need to understand and explore the core topics in the field, and the confidence and practice to build and analyze your own machine learning models. With the help of interesting and easy-to-follow practical examples, Frank Kane explains potentially complex topics such as Bayesian methods and K-means clustering in a way that anybody can understand them. Based on Frank’s successful data science course, Hands-On Data Science and Python Machine Learning empowers you to conduct data analysis and perform efficient machine learning using Python. Let Frank help you unearth the value in your data using the various data mining and data analysis techniques available in Python, and to develop efficient predictive models to predict future results. You will also learn how to perform large-scale machine learning on Big Data using Apache Spark. The book covers preparing your data for analysis, training machine learning models, and visualizing the final data analysis.
Table of Contents (11 chapters)
close
close

Preface

Being a data scientist in the tech industry is one of the most rewarding careers on the planet today. I went and studied actual job descriptions for data scientist roles at tech companies and I distilled those requirements down into the topics that you'll see in this course.

Hands-On Data Science and Python Machine Learning is really comprehensive. We'll start with a crash course on Python and do a review of some basic statistics and probability, but then we're going to dive right into over 60 topics in data mining and machine learning. That includes things such as Bayes' theorem, clustering, decision trees, regression analysis, experimental design; we'll look at them all. Some of these topics are really fun.

We're going to develop an actual movie recommendation system using actual user movie rating data. We're going to create a search engine that actually works for Wikipedia data. We're going to build a spam classifier that can correctly classify spam and nonspam emails in your email account, and we also have a whole section on scaling this work up to a cluster that runs on big data using Apache Spark.

If you're a software developer or programmer looking to transition into a career in data science, this course will teach you the hottest skills without all the mathematical notation and pretense that comes along with these topics. We're just going to explain these concepts and show you some Python code that actually works that you can dive in and mess around with to make those concepts sink home, and if you're working as a data analyst in the finance industry, this course can also teach you to make the transition into the tech industry. All you need is some prior experience in programming or scripting and you should be good to go.

The general format of this book is I'll start with each concept, explaining it in a bunch of sections and graphical examples. I will introduce you to some of the notations and fancy terminologies that data scientists like to use so you can talk the same language, but the concepts themselves are generally pretty simple. After that, I'll throw you into some actual Python code that actually works that we can run and mess around with, and that will show you how to actually apply these ideas to actual data. These are going to be presented as IPython Notebook files, and that's a format where I can intermix code and notes surrounding the code that explain what's going on in the concepts. You can take these notebook files with you after going through this book and use that as a handy-quick reference later on in your career, and at the end of each concept, I'll encourage you to actually dive into that Python code, make some modifications, mess around with it, and just gain more familiarity by getting hands-on and actually making some modifications, and seeing the effects they have.

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Hands-On Data Science and Python Machine Learning
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon