Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Statistics for Machine Learning
  • Table Of Contents Toc
  • Feedback & Rating feedback
Statistics for Machine Learning

Statistics for Machine Learning

By : Pratap Dangeti
3.7 (6)
close
close
Statistics for Machine Learning

Statistics for Machine Learning

3.7 (6)
By: Pratap Dangeti

Overview of this book

Complex statistics in machine learning worry a lot of developers. Knowing statistics helps you build strong machine learning models that are optimized for a given problem statement. This book will teach you all it takes to perform the complex statistical computations that are required for machine learning. You will gain information on the statistics behind supervised learning, unsupervised learning, reinforcement learning, and more. You will see real-world examples that discuss the statistical side of machine learning and familiarize yourself with it. You will come across programs for performing tasks such as modeling, parameter fitting, regression, classification, density collection, working with vectors, matrices, and more. By the end of the book, you will have mastered the statistics required for machine learning and will be able to apply your new skills to any sort of industry problem.
Table of Contents (10 chapters)
close
close

Temporal difference learning


Temporal Difference (TD) learning is the central and novel theme of reinforcement learning. TD learning is the combination of both Monte Carlo (MC) and Dynamic Programming (DP) ideas. Like Monte Carlo methods, TD methods can learn directly from the experiences without the model of environment. Similar to Dynamic Programming, TD methods update estimates based in part on other learned estimates, without waiting for a final outcome, unlike MC methods, in which estimates are updated after reaching the final outcome only.

Comparison between Monte Carlo methods and temporal difference learning

Though Monte-Carlo methods and Temporal Difference learning have similarities, there are inherent advantages of TD-learning over Monte Carlo methods.

Monte Carlo methods

Temporal Difference learning

MC must wait until the end of the episode before the return is known.

TD can learn online after every step and does not need to wait until the end of episode.

MC has high variance and low...

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Statistics for Machine Learning
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon