Book Image

Deep Learning By Example

Book Image

Deep Learning By Example

Overview of this book

Deep learning is a popular subset of machine learning, and it allows you to build complex models that are faster and give more accurate predictions. This book is your companion to take your first steps into the world of deep learning, with hands-on examples to boost your understanding of the topic. This book starts with a quick overview of the essential concepts of data science and machine learning which are required to get started with deep learning. It introduces you to Tensorflow, the most widely used machine learning library for training deep learning models. You will then work on your first deep learning problem by training a deep feed-forward neural network for digit classification, and move on to tackle other real-world problems in computer vision, language processing, sentiment analysis, and more. Advanced deep learning models such as generative adversarial networks and their applications are also covered in this book. By the end of this book, you will have a solid understanding of all the essential concepts in deep learning. With the help of the examples and code provided in this book, you will be equipped to train your own deep learning models with more confidence.
Table of Contents (18 chapters)
16
Implementing Fish Recognition

Generalization/true error

This is the second and more important type of error in data science. The whole purpose of building learning systems is the ability to get a smaller generalization error on the test set; in other words, to get the model to work well on a set of observation/samples that haven't been used in the training phase. If you still consider the class scenario from the previous section, you can think of generalization error as the ability to solve exam problems that weren’t necessarily similar to the problems you solved in the classroom to learn and get familiar with the subject. So, generalization performance is the model's ability to use the skills (parameters) that it learned in the training phase in order to correctly predict the outcome/output of unseen data.

In Figure 13, the light blue line represents the generalization error. You can see...