Book Image

Deep Learning By Example

Book Image

Deep Learning By Example

Overview of this book

Deep learning is a popular subset of machine learning, and it allows you to build complex models that are faster and give more accurate predictions. This book is your companion to take your first steps into the world of deep learning, with hands-on examples to boost your understanding of the topic. This book starts with a quick overview of the essential concepts of data science and machine learning which are required to get started with deep learning. It introduces you to Tensorflow, the most widely used machine learning library for training deep learning models. You will then work on your first deep learning problem by training a deep feed-forward neural network for digit classification, and move on to tackle other real-world problems in computer vision, language processing, sentiment analysis, and more. Advanced deep learning models such as generative adversarial networks and their applications are also covered in this book. By the end of this book, you will have a solid understanding of all the essential concepts in deep learning. With the help of the examples and code provided in this book, you will be equipped to train your own deep learning models with more confidence.
Table of Contents (18 chapters)
16
Implementing Fish Recognition

The curse of dimensionality

In order to better explain the curse of dimensionality and the problem of overfitting, we are going to go through an example in which we have a set of images. Each image has a cat or a dog in it. So, we would like to build a model that can distinguish between the images with cats and the ones with dogs. Like the fish recognition system in Chapter 1, Data science - Bird's-eye view, we need to find an explanatory feature that the learning algorithm can use to distinguish between the two classes (cats and dogs). In this example, we can argue that color is a good descriptor to be used to differentiate between cats and dogs. So the average red, average blue, and average green colors can be used as explanatory features to distinguish between the two classes.

The algorithm will then combine these three features in some way to form a decision boundary...