Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Hands-On Time Series Analysis with R
  • Table Of Contents Toc
Hands-On Time Series Analysis with R

Hands-On Time Series Analysis with R

By : Rami Krispin
3.9 (10)
close
close
Hands-On Time Series Analysis with R

Hands-On Time Series Analysis with R

3.9 (10)
By: Rami Krispin

Overview of this book

Time-series analysis is the art of extracting meaningful insights from, and revealing patterns in, time-series data using statistical and data visualization approaches. These insights and patterns can then be utilized to explore past events and forecast future values in the series. This book explores the basics of time-series analysis with R and lays the foundation you need to build forecasting models. You will learn how to preprocess raw time-series data and clean and manipulate data with packages such as stats, lubridate, xts, and zoo. You will analyze data using both descriptive statistics and rich data visualization tools in R including the TSstudio, plotly, and ggplot2 packages. The book then delves into traditional forecasting models such as time-series linear regression, exponential smoothing (Holt, Holt-Winter, and more) and Auto-Regressive Integrated Moving Average (ARIMA) models with the stats and forecast packages. You'll also work on advanced time-series regression models with machine learning algorithms such as random forest and Gradient Boosting Machine using the h2o package. By the end of this book, you will have developed the skills necessary for exploring your data, identifying patterns, and building a forecasting model using various traditional and machine learning methods.
Table of Contents (14 chapters)
close
close

Correlation Analysis

Due to the continuous and chronologically ordered nature of time series data, there is a likelihood that there will be some degree of correlation between the series observations. For instance, the temperature in the next hour is not a random event since, in most cases, it has a strong relationship with the current temperature or the temperatures that have occurred during the past 24 hours. In many cases, the series of past observations contains predictive information about future events, which can be utilized to forecast the series' future observations. Throughout this chapter, we will focus on identifying and revealing those relationships with the use of correlation analysis techniques, such as the autocorrelation and cross-correlation functions, along with the data visualization tools.

This chapter will cover the following topics:

  • Causality versus...
Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Hands-On Time Series Analysis with R
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon