Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Machine Learning Quick Reference
  • Table Of Contents Toc
Machine Learning Quick Reference

Machine Learning Quick Reference

By : Kumar
close
close
Machine Learning Quick Reference

Machine Learning Quick Reference

By: Kumar

Overview of this book

Machine learning makes it possible to learn about the unknowns and gain hidden insights into your datasets by mastering many tools and techniques. This book guides you to do just that in a very compact manner. After giving a quick overview of what machine learning is all about, Machine Learning Quick Reference jumps right into its core algorithms and demonstrates how they can be applied to real-world scenarios. From model evaluation to optimizing their performance, this book will introduce you to the best practices in machine learning. Furthermore, you will also look at the more advanced aspects such as training neural networks and work with different kinds of data, such as text, time-series, and sequential data. Advanced methods and techniques such as causal inference, deep Gaussian processes, and more are also covered. By the end of this book, you will be able to train fast, accurate machine learning models at your fingertips, which you can easily use as a point of reference.
Table of Contents (13 chapters)
close
close

Linear separability

Linear separability implies that if there are two classes then there will be a point, line, plane, or hyperplane that splits the input features in such a way that all points of one class are in one-half space and the second class is in the other half-space.

For example, here is a case of selling a house based on area and price. We have got a number of data points for that along with the class, which is house Sold/Not Sold:

In the preceding figure, all the N, are the class (event) of Not Sold, which has been derived based on the Price and Area of the house and all the instances of S represent the class of the house getting sold. The number of N and S represent the data points on which the class has been determined.

In the first diagram, N and S are quite close and happen to be more random, hence, it's difficult to have linear separability...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Machine Learning Quick Reference
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon