Book Image

R Deep Learning Essentials. - Second Edition

By : Mark Hodnett, Joshua F. Wiley
Book Image

R Deep Learning Essentials. - Second Edition

By: Mark Hodnett, Joshua F. Wiley

Overview of this book

Deep learning is a powerful subset of machine learning that is very successful in domains such as computer vision and natural language processing (NLP). This second edition of R Deep Learning Essentials will open the gates for you to enter the world of neural networks by building powerful deep learning models using the R ecosystem. This book will introduce you to the basic principles of deep learning and teach you to build a neural network model from scratch. As you make your way through the book, you will explore deep learning libraries, such as Keras, MXNet, and TensorFlow, and create interesting deep learning models for a variety of tasks and problems, including structured data, computer vision, text data, anomaly detection, and recommendation systems. You’ll cover advanced topics, such as generative adversarial networks (GANs), transfer learning, and large-scale deep learning in the cloud. In the concluding chapters, you will learn about the theoretical concepts of deep learning projects, such as model optimization, overfitting, and data augmentation, together with other advanced topics. By the end of this book, you will be fully prepared and able to implement deep learning concepts in your research work or projects.
Table of Contents (13 chapters)

Neural networks in R

We will build several neural networks in this section. First, we will use the neuralnet package to create a neural network model that we can visualize. We will also use the nnet and RSNNS (Bergmeir, C., and Benítez, J. M. (2012)) packages. These are standard R packages and can be installed by the install.packages command or from the packages pane in RStudio. Although it is possible to use the nnet package directly, we are going to use it through the caret package, which is short for Classification and Regression Training. The caret package provides a standardized interface to work with many machine learning (ML) models in R, and also has some useful features for validation and performance assessment that we will use in this chapter and the next.

For our first examples of building neural networks, we will use the MNIST dataset, which is a classic classification...