Book Image

R Deep Learning Essentials. - Second Edition

By : Mark Hodnett, Joshua F. Wiley
Book Image

R Deep Learning Essentials. - Second Edition

By: Mark Hodnett, Joshua F. Wiley

Overview of this book

Deep learning is a powerful subset of machine learning that is very successful in domains such as computer vision and natural language processing (NLP). This second edition of R Deep Learning Essentials will open the gates for you to enter the world of neural networks by building powerful deep learning models using the R ecosystem. This book will introduce you to the basic principles of deep learning and teach you to build a neural network model from scratch. As you make your way through the book, you will explore deep learning libraries, such as Keras, MXNet, and TensorFlow, and create interesting deep learning models for a variety of tasks and problems, including structured data, computer vision, text data, anomaly detection, and recommendation systems. You’ll cover advanced topics, such as generative adversarial networks (GANs), transfer learning, and large-scale deep learning in the cloud. In the concluding chapters, you will learn about the theoretical concepts of deep learning projects, such as model optimization, overfitting, and data augmentation, together with other advanced topics. By the end of this book, you will be fully prepared and able to implement deep learning concepts in your research work or projects.
Table of Contents (13 chapters)

Getting started with deep feedforward neural networks

A deep feedforward neural network is designed to approximate a function, f(), that maps some set of input variables, x, to an output variable, y. They are called feedforward neural networks because information flows from the input through each successive layer as far as the output, and there are no feedback or recursive loops (models including both forward and backward connections are referred to as recurrent neural networks).

Deep feedforward neural networks are applicable to a wide range of problems, and are particularly useful for applications such as image classification. More generally, feedforward neural networks are useful for prediction and classification where there is a clearly defined outcome (what digit an image contains, whether someone is walking upstairs or walking on a flat surface, the presence/absence of disease...