Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering OpenCV 4
  • Table Of Contents Toc
Mastering OpenCV 4

Mastering OpenCV 4 - Third Edition

By : Roy Shilkrot, Millán Escrivá
2.7 (3)
close
close
Mastering OpenCV 4

Mastering OpenCV 4

2.7 (3)
By: Roy Shilkrot, Millán Escrivá

Overview of this book

Mastering OpenCV, now in its third edition, targets computer vision engineers taking their first steps toward mastering OpenCV. Keeping the mathematical formulations to a solid but bare minimum, the book delivers complete projects from ideation to running code, targeting current hot topics in computer vision such as face recognition, landmark detection and pose estimation, and number recognition with deep convolutional networks. You’ll learn from experienced OpenCV experts how to implement computer vision products and projects both in academia and industry in a comfortable package. You’ll get acquainted with API functionality and gain insights into design choices in a complete computer vision project. You’ll also go beyond the basics of computer vision to implement solutions for complex image processing projects. By the end of the book, you will have created various working prototypes with the help of projects in the book and be well versed with the new features of OpenCV4.
Table of Contents (12 chapters)
close
close

Plate detection

In this step, we have to detect all the plates in a current camera frame. To do this task, we divide it in to two main steps: segmentation and segment classification. The feature step is not explained because we use the image patch as a vector feature.

In the first step (segmentation), we will apply different filters, morphological operations, contour algorithms, and validations to retrieve parts of the image that could contain a plate.

In the second step (classification), we will apply an SVM classifier to each image patch, our feature. Before creating our main application, we will train with two different classes: plate and non-plate. We will work with parallel frontal view color images with 800 pixels of width and that are taken between two and four meters from a car. These requirements are important for correct segmentation. We can perform detection if we create...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Mastering OpenCV 4
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon