Book Image

Hands-On Data Analysis with Pandas

By : Stefanie Molin
Book Image

Hands-On Data Analysis with Pandas

By: Stefanie Molin

Overview of this book

Data analysis has become a necessary skill in a variety of domains where knowing how to work with data and extract insights can generate significant value. Hands-On Data Analysis with Pandas will show you how to analyze your data, get started with machine learning, and work effectively with Python libraries often used for data science, such as pandas, NumPy, matplotlib, seaborn, and scikit-learn. Using real-world datasets, you will learn how to use the powerful pandas library to perform data wrangling to reshape, clean, and aggregate your data. Then, you will be able to conduct exploratory data analysis by calculating summary statistics and visualizing the data to find patterns. In the concluding chapters, you will explore some applications of anomaly detection, regression, clustering, and classification using scikit-learn to make predictions based on past data. By the end of this book, you will be equipped with the skills you need to use pandas to ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets.
Table of Contents (21 chapters)
Free Chapter
1
Section 1: Getting Started with Pandas
4
Section 2: Using Pandas for Data Analysis
9
Section 3: Applications - Real-World Analyses Using Pandas
12
Section 4: Introduction to Machine Learning with Scikit-Learn
16
Section 5: Additional Resources
18
Solutions

Ensemble methods

Ensemble methods combine many models (often weak ones) to create a stronger one that will either minimize average error between observed and predicted values (the bias), or improve how well it generalizes to unseen data (minimize the variance). We have to strike a balance between complex models that may increase variance, as they tend to overfit, and simple models that may have high bias, as these tend to underfit. This is called the bias-variance trade-off, which is illustrated in the following subplots:

Ensemble methods can be broken down into three categories: boosting, bagging, and stacking. Boosting trains many weak learners, which learn from each other's mistakes to reduce bias, making a stronger learner. Bagging, on the other hand, uses bootstrap aggregation to train many models on bootstrap samples of the data and aggregate the results together...