Book Image

Python for Finance Cookbook

By : Eryk Lewinson
Book Image

Python for Finance Cookbook

By: Eryk Lewinson

Overview of this book

Python is one of the most popular programming languages used in the financial industry, with a huge set of accompanying libraries. In this book, you'll cover different ways of downloading financial data and preparing it for modeling. You'll calculate popular indicators used in technical analysis, such as Bollinger Bands, MACD, RSI, and backtest automatic trading strategies. Next, you'll cover time series analysis and models, such as exponential smoothing, ARIMA, and GARCH (including multivariate specifications), before exploring the popular CAPM and the Fama-French three-factor model. You'll then discover how to optimize asset allocation and use Monte Carlo simulations for tasks such as calculating the price of American options and estimating the Value at Risk (VaR). In later chapters, you'll work through an entire data science project in the financial domain. You'll also learn how to solve the credit card fraud and default problems using advanced classifiers such as random forest, XGBoost, LightGBM, and stacked models. You'll then be able to tune the hyperparameters of the models and handle class imbalance. Finally, you'll focus on learning how to use deep learning (PyTorch) for approaching financial tasks. By the end of this book, you’ll have learned how to effectively analyze financial data using a recipe-based approach.
Table of Contents (12 chapters)

Monte Carlo Simulations in Finance

Monte Carlo simulations are a class of computational algorithms that use repeated random sampling to solve any problems that have a probabilistic interpretation. In finance, one of the reasons they gained popularity is that they can be used to accurately estimate integrals. The main idea of Monte Carlo simulations is to produce a multitude of sample paths—possible scenarios/outcomes, often over a given period of time. The horizon is then split into a specified number of time steps and the process of doing so is called discretization. Its goal is to approximate continuous time, since the pricing of financial instruments happens in continuous time.

The results from all these simulated sample paths can be used to calculate metrics such as the percentage of times an event occurred, the average value of an instrument at the last step, and so...