Book Image

Python for Finance Cookbook

By : Eryk Lewinson
Book Image

Python for Finance Cookbook

By: Eryk Lewinson

Overview of this book

Python is one of the most popular programming languages used in the financial industry, with a huge set of accompanying libraries. In this book, you'll cover different ways of downloading financial data and preparing it for modeling. You'll calculate popular indicators used in technical analysis, such as Bollinger Bands, MACD, RSI, and backtest automatic trading strategies. Next, you'll cover time series analysis and models, such as exponential smoothing, ARIMA, and GARCH (including multivariate specifications), before exploring the popular CAPM and the Fama-French three-factor model. You'll then discover how to optimize asset allocation and use Monte Carlo simulations for tasks such as calculating the price of American options and estimating the Value at Risk (VaR). In later chapters, you'll work through an entire data science project in the financial domain. You'll also learn how to solve the credit card fraud and default problems using advanced classifiers such as random forest, XGBoost, LightGBM, and stacked models. You'll then be able to tune the hyperparameters of the models and handle class imbalance. Finally, you'll focus on learning how to use deep learning (PyTorch) for approaching financial tasks. By the end of this book, you’ll have learned how to effectively analyze financial data using a recipe-based approach.
Table of Contents (12 chapters)

Modeling time series with ARIMA class models

ARIMA models are a class of statistical models that are used for analyzing and forecasting time series data. They aim to do so by describing the autocorrelations in the data. ARIMA stands for Autoregressive Integrated Moving Average and is an extension of a simpler ARMA model. The goal of the additional integration component is to ensure stationarity of the series, because, in contrast to the exponential smoothing models, the ARIMA class requires the time series to be stationary. In the next few paragraphs, we briefly go over the building blocks of ARIMA models.

AR (autoregressive) model:

  • This kind of model uses the relationship between an observation and its lagged values.
  • In the financial context, the autoregressive model tries to account for the momentum and mean reversion effects.

I (integration):

  • Integration, in this case,...