Book Image

Hands-On Artificial Intelligence for Cybersecurity

By : Alessandro Parisi
Book Image

Hands-On Artificial Intelligence for Cybersecurity

By: Alessandro Parisi

Overview of this book

Today's organizations spend billions of dollars globally on cybersecurity. Artificial intelligence has emerged as a great solution for building smarter and safer security systems that allow you to predict and detect suspicious network activity, such as phishing or unauthorized intrusions. This cybersecurity book presents and demonstrates popular and successful AI approaches and models that you can adapt to detect potential attacks and protect your corporate systems. You'll learn about the role of machine learning and neural networks, as well as deep learning in cybersecurity, and you'll also learn how you can infuse AI capabilities into building smart defensive mechanisms. As you advance, you'll be able to apply these strategies across a variety of applications, including spam filters, network intrusion detection, botnet detection, and secure authentication. By the end of this book, you'll be ready to develop intelligent systems that can detect unusual and suspicious patterns and attacks, thereby developing strong network security defenses using AI.
Table of Contents (16 chapters)
Free Chapter
1
Section 1: AI Core Concepts and Tools of the Trade
4
Section 2: Detecting Cybersecurity Threats with AI
8
Section 3: Protecting Sensitive Information and Assets
12
Section 4: Evaluating and Testing Your AI Arsenal

Algorithm training and optimization

When preparing automated learning procedures, we will often face a series of challenges. We need to overcome these challenges in order to recognize and avoid compromising the reliability of the procedures themselves, thus preventing the possibility of drawing erroneous or hasty conclusions that, in the context of cybersecurity, can have devastating consequences.

One of the main problems that we often face, especially in the case of the configuration of threat detection procedures, is the management of false positives; that is, cases detected by the algorithm and classified as potential threats, which in reality are not. We will discuss false positives and ML evaluation metrics in more depth in Chapter 7, Fraud Prevention with Cloud AI Solutions, and Chapter 9, Evaluating Algorithms.

The management of false positives is particularly burdensome...