Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Azure Machine Learning
  • Table Of Contents Toc
Mastering Azure Machine Learning

Mastering Azure Machine Learning

By : Christoph Körner, Kaijisse Waaijer
4.3 (6)
close
close
Mastering Azure Machine Learning

Mastering Azure Machine Learning

4.3 (6)
By: Christoph Körner, Kaijisse Waaijer

Overview of this book

The increase being seen in data volume today requires distributed systems, powerful algorithms, and scalable cloud infrastructure to compute insights and train and deploy machine learning (ML) models. This book will help you improve your knowledge of building ML models using Azure and end-to-end ML pipelines on the cloud. The book starts with an overview of an end-to-end ML project and a guide on how to choose the right Azure service for different ML tasks. It then focuses on Azure Machine Learning and takes you through the process of data experimentation, data preparation, and feature engineering using Azure Machine Learning and Python. You'll learn advanced feature extraction techniques using natural language processing (NLP), classical ML techniques, and the secrets of both a great recommendation engine and a performant computer vision model using deep learning methods. You'll also explore how to train, optimize, and tune models using Azure Automated Machine Learning and HyperDrive, and perform distributed training on Azure. Then, you'll learn different deployment and monitoring techniques using Azure Kubernetes Services with Azure Machine Learning, along with the basics of MLOps—DevOps for ML to automate your ML process as CI/CD pipeline. By the end of this book, you'll have mastered Azure Machine Learning and be able to confidently design, build and operate scalable ML pipelines in Azure.
Table of Contents (20 chapters)
close
close
1
Section 1: Azure Machine Learning
4
Section 2: Experimentation and Data Preparation
9
Section 3: Training Machine Learning Models
15
Section 4: Optimization and Deployment of Machine Learning Models
19
Index

Summary

In this chapter, we saw an overview of all the steps involved in making a custom ML pipeline. You might have seen familiar concepts for data preprocessing or analytics and learned an important lesson. Data experimentation is a step-by-step approach rather than an experimental process. Look for missing values, data distribution, and relationships between features and targets. This analysis will greatly help you to understand which preprocessing steps to perform and what model performance to expect.

You now know that data preprocessing, or feature engineering, is the most important part of the whole ML process. The more prior knowledge you have about the data, the better you can encode categorical and temporal variables or transform text to numerical space using NLP techniques. You learned that choosing the proper ML task, model, error metric, and train-test split is mostly defined by business decisions (for example, object detection against segmentation) or a performance trade-off (for example, stacking).

Using your newly acquired skills, you should now be able to draft an end-to-end ML process and understand each step from experimentation to deployment. In the next chapter, we will look at an overview of which specific Azure services can be used to efficiently train ML models in the cloud.

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Mastering Azure Machine Learning
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon