Book Image

Python: Advanced Guide to Artificial Intelligence

By : Giuseppe Bonaccorso, Rajalingappaa Shanmugamani
Book Image

Python: Advanced Guide to Artificial Intelligence

By: Giuseppe Bonaccorso, Rajalingappaa Shanmugamani

Overview of this book

This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries. You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more. By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems This Learning Path includes content from the following Packt products: • Mastering Machine Learning Algorithms by Giuseppe Bonaccorso • Mastering TensorFlow 1.x by Armando Fandango • Deep Learning for Computer Vision by Rajalingappaa Shanmugamani
Table of Contents (31 chapters)
Title Page
About Packt
Contributors
Preface
19
Tensor Processing Units
Index

Semi-supervised scenario


A typical semi-supervised scenario is not very different from a supervised one. Let's suppose we have a data generating process, pdata:

However, contrary to a supervised approach, we have only a limited number N of samples drawn from pdata and provided with a label, as follows:

Instead, we have a larger amount (M) of unlabeled samples drawn from the marginal distribution p(x):

In general, there are no restrictions on the values of N and M; however, a semi-supervised problem arises when the number of unlabeled samples is much higher than the number of complete samples. If we can draw N >> M labeled samples from pdata, it's probably useless to keep on working with semi-supervised approaches and preferring classical supervised methods is likely to be the best choice. The extra complexity we need is justified by M >> N, which is a common condition in all those situations where the amount of available unlabeled data is large, while the number of correctly labeled...