Book Image

Getting Started with Streamlit for Data Science

By : Tyler Richards
Book Image

Getting Started with Streamlit for Data Science

By: Tyler Richards

Overview of this book

Streamlit shortens the development time for the creation of data-focused web applications, allowing data scientists to create web app prototypes using Python in hours instead of days. Getting Started with Streamlit for Data Science takes a hands-on approach to helping you learn the tips and tricks that will have you up and running with Streamlit in no time. You'll start with the fundamentals of Streamlit by creating a basic app and gradually build on the foundation by producing high-quality graphics with data visualization and testing machine learning models. As you advance through the chapters, you’ll walk through practical examples of both personal data projects and work-related data-focused web applications, and get to grips with more challenging topics such as using Streamlit Components, beautifying your apps, and quick deployment of your new apps. By the end of this book, you’ll be able to create dynamic web apps in Streamlit quickly and effortlessly using the power of Python.
Table of Contents (17 chapters)
1
Section 1: Creating Basic Streamlit Applications
7
Section 2: Advanced Streamlit Applications
11
Section 3: Streamlit Use Cases

Debugging Streamlit apps

We broadly have two options for Streamlit development.

  • Develop in Streamlit and st.write() as a debugger.
  • Explore in Jupyter and then copy to Streamlit.

Developing in Streamlit

In the first option, we write our code directly in Streamlit as we're experimenting and exploring exactly what our application will do. We've basically been taking this option already, which works very well if we have less exploration work and more implementation work to do.

Pros:

  • What you see is what you get
  • No need to maintain both IPython and Python versions of the same app
  • Better experience for learning how to write production code

Cons:

  • A slower feedback loop (the entire app must run before feedback)
  • A potentially unfamiliar development environment

Exploring in Jupyter and then copying to Streamlit

Another option is to utilize the extremely popular Jupyter data science product to write and test out...