Book Image

Time Series Analysis with Python Cookbook

By : Tarek A. Atwan
Book Image

Time Series Analysis with Python Cookbook

By: Tarek A. Atwan

Overview of this book

Time series data is everywhere, available at a high frequency and volume. It is complex and can contain noise, irregularities, and multiple patterns, making it crucial to be well-versed with the techniques covered in this book for data preparation, analysis, and forecasting. This book covers practical techniques for working with time series data, starting with ingesting time series data from various sources and formats, whether in private cloud storage, relational databases, non-relational databases, or specialized time series databases such as InfluxDB. Next, you’ll learn strategies for handling missing data, dealing with time zones and custom business days, and detecting anomalies using intuitive statistical methods, followed by more advanced unsupervised ML models. The book will also explore forecasting using classical statistical models such as Holt-Winters, SARIMA, and VAR. The recipes will present practical techniques for handling non-stationary data, using power transforms, ACF and PACF plots, and decomposing time series data with multiple seasonal patterns. Later, you’ll work with ML and DL models using TensorFlow and PyTorch. Finally, you’ll learn how to evaluate, compare, optimize models, and more using the recipes covered in the book.
Table of Contents (18 chapters)

Chapter 5: Persisting Time Series Data to Databases

It is very common that, after completing a data analysis task, in which data is extracted from a source system, processed, transformed, and possibly modeled, the output is stored in a database for persistence. You can always store the data in a flat file or export to a CSV, but when dealing with a large amount of corporate data (including proprietary data), you will need a more robust and secure way to store it. Databases offer several advantages, including security (encryption at rest), concurrency (allowing many users to query the database without impacting performance), fault tolerance, ACID compliance, optimized read-write mechanisms, distributed computing, and distributed storage.

In a corporate context, once data is stored in a database, it can be shared across different departments; for example, finance, marketing, sales, and product development can now access the data stored for their own needs. Furthermore, the data can...