Book Image

The Definitive Guide to Google Vertex AI

By : Jasmeet Bhatia, Kartik Chaudhary
4 (1)
Book Image

The Definitive Guide to Google Vertex AI

4 (1)
By: Jasmeet Bhatia, Kartik Chaudhary

Overview of this book

While AI has become an integral part of every organization today, the development of large-scale ML solutions and management of complex ML workflows in production continue to pose challenges for many. Google’s unified data and AI platform, Vertex AI, directly addresses these challenges with its array of MLOPs tools designed for overall workflow management. This book is a comprehensive guide that lets you explore Google Vertex AI’s easy-to-advanced level features for end-to-end ML solution development. Throughout this book, you’ll discover how Vertex AI empowers you by providing essential tools for critical tasks, including data management, model building, large-scale experimentations, metadata logging, model deployments, and monitoring. You’ll learn how to harness the full potential of Vertex AI for developing and deploying no-code, low-code, or fully customized ML solutions. This book takes a hands-on approach to developing u deploying some real-world ML solutions on Google Cloud, leveraging key technologies such as Vision, NLP, generative AI, and recommendation systems. Additionally, this book covers pre-built and turnkey solution offerings as well as guidance on seamlessly integrating them into your ML workflows. By the end of this book, you’ll have the confidence to develop and deploy large-scale production-grade ML solutions using the MLOps tooling and best practices from Google.
Table of Contents (24 chapters)
1
Part 1:The Importance of MLOps in a Real-World ML Deployment
4
Part 2: Machine Learning Tools for Custom Models on Google Cloud
14
Part 3: Prebuilt/Turnkey ML Solutions Available in GCP
18
Part 4: Building Real-World ML Solutions with Google Cloud

Scheduling notebooks in Vertex AI

Jupyter Notebook environments are great for doing some initial experiments. But when it comes to launching long-running jobs, multiple training trials with different input parameters (such as hyperparameter tuning jobs), or adding accelerators to training jobs, we usually copy our code into a Python file and launch experiments using custom Docker containers or managed pipelines such as Vertex AI pipelines. Considering this situation and to minimize the duplication of efforts, Vertex AI-managed notebook instances provide us with the functionality of scheduling notebooks on an ad hoc or recurring basis. This feature allows us to execute our scheduled notebook cell by cell on Vertex AI. It provides us with the flexibility to seamlessly scale our processing power and choose suitable hardware for the task. Additionally, we can pass different input parameters for experimentation purposes.

Configuring notebook executions

Let’s try to configure...