Book Image

The Definitive Guide to Google Vertex AI

By : Jasmeet Bhatia, Kartik Chaudhary
4 (1)
Book Image

The Definitive Guide to Google Vertex AI

4 (1)
By: Jasmeet Bhatia, Kartik Chaudhary

Overview of this book

While AI has become an integral part of every organization today, the development of large-scale ML solutions and management of complex ML workflows in production continue to pose challenges for many. Google’s unified data and AI platform, Vertex AI, directly addresses these challenges with its array of MLOPs tools designed for overall workflow management. This book is a comprehensive guide that lets you explore Google Vertex AI’s easy-to-advanced level features for end-to-end ML solution development. Throughout this book, you’ll discover how Vertex AI empowers you by providing essential tools for critical tasks, including data management, model building, large-scale experimentations, metadata logging, model deployments, and monitoring. You’ll learn how to harness the full potential of Vertex AI for developing and deploying no-code, low-code, or fully customized ML solutions. This book takes a hands-on approach to developing u deploying some real-world ML solutions on Google Cloud, leveraging key technologies such as Vision, NLP, generative AI, and recommendation systems. Additionally, this book covers pre-built and turnkey solution offerings as well as guidance on seamlessly integrating them into your ML workflows. By the end of this book, you’ll have the confidence to develop and deploy large-scale production-grade ML solutions using the MLOps tooling and best practices from Google.
Table of Contents (24 chapters)
1
Part 1:The Importance of MLOps in a Real-World ML Deployment
4
Part 2: Machine Learning Tools for Custom Models on Google Cloud
14
Part 3: Prebuilt/Turnkey ML Solutions Available in GCP
18
Part 4: Building Real-World ML Solutions with Google Cloud

Doing inference with BQML

In supervised ML, the ultimate goal is to use a trained model to make predictions on new data. BQML provides the ML.PREDICT function for this purpose. Using this function, you can easily predict outcomes by supplying new data to a trained model. The ML.PREDICT function can be used during model creation, after model creation, or after a failure, so long as at least one iteration has been completed. The function returns a table with the same number of rows as the input table, and it includes all columns from the input table and all output columns from the model, with the output column names prefixed with predicted_.

ML.PREDICT(MODEL model_name,
          {TABLE table_name | (query_statement)}
          [, STRUCT<threshold FLOAT64,
          keep_original_columns BOOL> settings)])

The output fields that...