Book Image

Machine Learning for Time-Series with Python

By : Ben Auffarth
Book Image

Machine Learning for Time-Series with Python

By: Ben Auffarth

Overview of this book

The Python time-series ecosystem is huge and often quite hard to get a good grasp on, especially for time-series since there are so many new libraries and new models. This book aims to deepen your understanding of time series by providing a comprehensive overview of popular Python time-series packages and help you build better predictive systems. Machine Learning for Time-Series with Python starts by re-introducing the basics of time series and then builds your understanding of traditional autoregressive models as well as modern non-parametric models. By observing practical examples and the theory behind them, you will become confident with loading time-series datasets from any source, deep learning models like recurrent neural networks and causal convolutional network models, and gradient boosting with feature engineering. This book will also guide you in matching the right model to the right problem by explaining the theory behind several useful models. You’ll also have a look at real-world case studies covering weather, traffic, biking, and stock market data. By the end of this book, you should feel at home with effectively analyzing and applying machine learning methods to time-series.
Table of Contents (15 chapters)
Other Books You May Enjoy

Reinforcement Learning for Time-Series

Reinforcement learning is a widely successful paradigm for control problems and function optimization that doesn't require labeled data. It's a powerful framework for experience-driven autonomous learning, where an agent interacts directly with the environment by taking actions and improves its efficiency by trial and error. Reinforcement learning has been especially popular since the breakthrough of the London-based Google-owned company DeepMind in complex games.

In this chapter, we'll discuss a classification of reinforcement learning (RL) approaches in time-series specifically economics, and we'll deal with the accuracy and applicability of RL-based time-series models.

We'll start with core concepts and algorithms in RL relevant to time-series and we'll talk about open issues and challenges in current deep RL models.

I am going to cover the following topics:

  • Introduction to Reinforcement...