Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Azure Data and AI Architect Handbook
  • Table Of Contents Toc
Azure Data and AI Architect Handbook

Azure Data and AI Architect Handbook

By : Olivier Mertens, Breght Van Baelen
4.4 (14)
close
close
Azure Data and AI Architect Handbook

Azure Data and AI Architect Handbook

4.4 (14)
By: Olivier Mertens, Breght Van Baelen

Overview of this book

With data’s growing importance in businesses, the need for cloud data and AI architects has never been higher. The Azure Data and AI Architect Handbook is designed to assist any data professional or academic looking to advance their cloud data platform designing skills. This book will help you understand all the individual components of an end-to-end data architecture and how to piece them together into a scalable and robust solution. You’ll begin by getting to grips with core data architecture design concepts and Azure Data & AI services, before exploring cloud landing zones and best practices for building up an enterprise-scale data platform from scratch. Next, you’ll take a deep dive into various data domains such as data engineering, business intelligence, data science, and data governance. As you advance, you’ll cover topics ranging from learning different methods of ingesting data into the cloud to designing the right data warehousing solution, managing large-scale data transformations, extracting valuable insights, and learning how to leverage cloud computing to drive advanced analytical workloads. Finally, you’ll discover how to add data governance, compliance, and security to solutions. By the end of this book, you’ll have gained the expertise needed to become a well-rounded Azure Data & AI architect.
Table of Contents (18 chapters)
close
close
1
Part 1: Introduction to Azure Data Architect
4
Part 2: Data Engineering on Azure
8
Part 3: Data Warehousing and Analytics
13
Part 4: Data Security, Governance, and Compliance

Summary

In this chapter, we first discussed how to extract value from your data by asking the right analytical questions. Questions may increase in complexity from descriptive, diagnostic, and predictive to prescriptive but may also hold more value. A complexity-value matrix is necessary to prioritize data projects and build a data roadmap. A crucial thing to remember is to capture data as soon as possible, even if you don’t have a data strategy or roadmap yet. All data that you do not capture now cannot be used in the future to extract value from. Next, we introduced a reference architecture diagram. Over time, you will get familiar with every component of the diagram and how they interact with each other.

Four layers of cloud architectures were explained. The ingestion layer is used to pull data into the central cloud data platform. The storage layer is capable of holding massive amounts of data, often in a tiered system, where data gets more business-ready as it moves through the tiers. In the serving layer, the data warehouse is located, which holds data with a strictly enforced schema and is optimized for analytical workloads. Lastly, the consumption layer allows end users and external systems to consume the data in reports and dashboards or to be used in other applications.

Some components of the data platform span across multiple layers. Data orchestration and processing refers to data pipelines that ingest data into the cloud, move data from one place to another, and orchestrate data transformations. Advanced analytics leverages Azure’s many pre-trained ML models and a data science environment to perform complex calculations and provide meaningful predictions. Data governance tools bring data asset compliance, flexible access control, data lineage, and overall insights into the entire data estate. Impeccable security of individual components as well as the integrations between them takes away many of the worries regarding harmful actions being made by third parties. Finally, the extensive monitoring capabilities in Azure allow us to get insights into the health and performance of the processes and data storage in the platform.

Finally, we discussed the drawbacks that on-premises architectures face, such as scalability, cost optimization, agility, and flexibility. These challenges are often conveniently dealt with by leveraging the benefits of cloud-based approaches.

In the next chapter, we will look at two Microsoft frameworks that ease the move to the cloud.

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Azure Data and AI Architect Handbook
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon