Book Image

A Handbook of Mathematical Models with Python

By : Dr. Ranja Sarkar
Book Image

A Handbook of Mathematical Models with Python

By: Dr. Ranja Sarkar

Overview of this book

Mathematical modeling is the art of transforming a business problem into a well-defined mathematical formulation. Its emphasis on interpretability is particularly crucial when deploying a model to support high-stake decisions in sensitive sectors like pharmaceuticals and healthcare. Through this book, you’ll gain a firm grasp of the foundational mathematics underpinning various machine learning algorithms. Equipped with this knowledge, you can modify algorithms to suit your business problem. Starting with the basic theory and concepts of mathematical modeling, you’ll explore an array of mathematical tools that will empower you to extract insights and understand the data better, which in turn will aid in making optimal, data-driven decisions. The book allows you to explore mathematical optimization and its wide range of applications, and concludes by highlighting the synergetic value derived from blending mathematical models with machine learning. Ultimately, you’ll be able to apply everything you’ve learned to choose the most fitting methodologies for the business problems you encounter.
Table of Contents (16 chapters)
1
Part 1:Mathematical Modeling
4
Part 2:Mathematical Tools
11
Part 3:Mathematical Optimization

Part 3:Mathematical Optimization

In this part, you will have exposure to optimization techniques that lay the foundation for machine learning, deep learning, and other models used in operations research. Optimization techniques are extremely powerful for predictive and prescriptive analytics and find applications in several complex problems in heavy industry. Additionally, blending classical mathematical modeling with machine learning often allows for the extraction of more meaningful insights for specific sensitive business problems.

This part has the following chapters:

  • Chapter 9, Exploring Optimization Techniques
  • Chapter 10, Optimization Techniques for Machine Learning