Book Image

10 Machine Learning Blueprints You Should Know for Cybersecurity

By : Rajvardhan Oak
4 (1)
Book Image

10 Machine Learning Blueprints You Should Know for Cybersecurity

4 (1)
By: Rajvardhan Oak

Overview of this book

Machine learning in security is harder than other domains because of the changing nature and abilities of adversaries, high stakes, and a lack of ground-truth data. This book will prepare machine learning practitioners to effectively handle tasks in the challenging yet exciting cybersecurity space. The book begins by helping you understand how advanced ML algorithms work and shows you practical examples of how they can be applied to security-specific problems with Python – by using open source datasets or instructing you to create your own. In one exercise, you’ll also use GPT 3.5, the secret sauce behind ChatGPT, to generate an artificial dataset of fabricated news. Later, you’ll find out how to apply the expert knowledge and human-in-the-loop decision-making that is necessary in the cybersecurity space. This book is designed to address the lack of proper resources available for individuals interested in transitioning into a data scientist role in cybersecurity. It concludes with case studies, interview questions, and blueprints for four projects that you can use to enhance your portfolio. By the end of this book, you’ll be able to apply machine learning algorithms to detect malware, fake news, deep fakes, and more, along with implementing privacy-preserving machine learning techniques such as differentially private ML.
Table of Contents (15 chapters)

Differentially private machine learning

In this section, we will look at how a fraud detection model can incorporate differential privacy. We will first look at the library we use to implement differential privacy, followed by how a credit card fraud detection machine learning model can be made differentially private.

IBM Diffprivlib

Diffprivlib is an open source Python library that provides a range of differential privacy tools and algorithms for data analysis. The library is designed to help data scientists and developers apply differential privacy techniques to their data in a simple and efficient way.

One of the key features of Diffprivlib is its extensive range of differentially private mechanisms. These include mechanisms for adding noise to data, such as the Gaussian, Laplace, and Exponential mechanisms, as well as more advanced mechanisms, such as the hierarchical and subsample mechanisms. The library also includes tools for calculating differential privacy parameters...