Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Bayesian Analysis with Python
  • Table Of Contents Toc
Bayesian Analysis with Python

Bayesian Analysis with Python - Third Edition

By : Osvaldo Martin
4.6 (21)
close
close
Bayesian Analysis with Python

Bayesian Analysis with Python

4.6 (21)
By: Osvaldo Martin

Overview of this book

The third edition of Bayesian Analysis with Python serves as an introduction to the main concepts of applied Bayesian modeling using PyMC, a state-of-the-art probabilistic programming library, and other libraries that support and facilitate modeling like ArviZ, for exploratory analysis of Bayesian models; Bambi, for flexible and easy hierarchical linear modeling; PreliZ, for prior elicitation; PyMC-BART, for flexible non-parametric regression; and Kulprit, for variable selection. In this updated edition, a brief and conceptual introduction to probability theory enhances your learning journey by introducing new topics like Bayesian additive regression trees (BART), featuring updated examples. Refined explanations, informed by feedback and experience from previous editions, underscore the book's emphasis on Bayesian statistics. You will explore various models, including hierarchical models, generalized linear models for regression and classification, mixture models, Gaussian processes, and BART, using synthetic and real datasets. By the end of this book, you’ll understand probabilistic modeling and be able to design and implement Bayesian models for data science, with a strong foundation for more advanced study. *Email sign-up and proof of purchase required
Table of Contents (15 chapters)
close
close
Preface
12
Bibliography
13
Other Books You May Enjoy
14
Index

Chapter 2
Programming Probabilistically

Our golems rarely have a physical form, but they too are often made of clay living in silicon as computer code. – Richard McElreath

Now that we have a very basic understanding of probability theory and Bayesian statistics, we are going to learn how to build probabilistic models using computational tools. Specifically, we are going to learn about probabilistic programming with PyMC [Abril-Pla et al.2023]. The basic idea is that we use code to specify statistical models and then PyMC will solve those models for us. We will not need to write Bayes’ theorem in explicit form. This is a good strategy for two reasons. First, many models do not lead to an analytic closed form, and thus we can only solve those models using numerical techniques. Second, modern Bayesian statistics is mainly done by writing code. We will be able to see that probabilistic programming offers an effective way to build and solve complex models and...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Bayesian Analysis with Python
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon