Book Image

Machine Learning Engineering with Python - Second Edition

By : Andrew P. McMahon
1.8 (4)
Book Image

Machine Learning Engineering with Python - Second Edition

1.8 (4)
By: Andrew P. McMahon

Overview of this book

The Second Edition of Machine Learning Engineering with Python is the practical guide that MLOps and ML engineers need to build solutions to real-world problems. It will provide you with the skills you need to stay ahead in this rapidly evolving field. The book takes an examples-based approach to help you develop your skills and covers the technical concepts, implementation patterns, and development methodologies you need. You'll explore the key steps of the ML development lifecycle and create your own standardized "model factory" for training and retraining of models. You'll learn to employ concepts like CI/CD and how to detect different types of drift. Get hands-on with the latest in deployment architectures and discover methods for scaling up your solutions. This edition goes deeper in all aspects of ML engineering and MLOps, with emphasis on the latest open-source and cloud-based technologies. This includes a completely revamped approach to advanced pipelining and orchestration techniques. With a new chapter on deep learning, generative AI, and LLMOps, you will learn to use tools like LangChain, PyTorch, and Hugging Face to leverage LLMs for supercharged analysis. You will explore AI assistants like GitHub Copilot to become more productive, then dive deep into the engineering considerations of working with deep learning.
Table of Contents (12 chapters)
10
Other Books You May Enjoy
11
Index

Summary

In this chapter, we learned about the important topic of how to build up our solutions for training and surfacing the ML models that we want to run in production. We split the components of such a solution into pieces that tackled training the models, the persistence of the models, serving the models, and triggering retraining for the models.

We conducted a detailed investigation into the reasons why you may want to separate your training and running components for performance reasons. We then discussed how you can perform drift detection on your model performance and data statistics to understand whether retraining should be triggered. This included some examples of performing drift detection using the alibi-detect and evidently.ai packages. We then summarized some of the key concepts of feature engineering, or how you transform your data into something that a ML model can understand. We then went into a deep dive on how ML models learn and what you can control about that process...