Book Image

Python Deep Learning - Third Edition

By : Ivan Vasilev
4 (1)
Book Image

Python Deep Learning - Third Edition

4 (1)
By: Ivan Vasilev

Overview of this book

The field of deep learning has developed rapidly recently and today covers a broad range of applications. This makes it challenging to navigate and hard to understand without solid foundations. This book will guide you from the basics of neural networks to the state-of-the-art large language models in use today. The first part of the book introduces the main machine learning concepts and paradigms. It covers the mathematical foundations, the structure, and the training algorithms of neural networks and dives into the essence of deep learning. The second part of the book introduces convolutional networks for computer vision. We’ll learn how to solve image classification, object detection, instance segmentation, and image generation tasks. The third part focuses on the attention mechanism and transformers – the core network architecture of large language models. We’ll discuss new types of advanced tasks they can solve, such as chatbots and text-to-image generation. By the end of this book, you’ll have a thorough understanding of the inner workings of deep neural networks. You'll have the ability to develop new models and adapt existing ones to solve your tasks. You’ll also have sufficient understanding to continue your research and stay up to date with the latest advancements in the field.
Table of Contents (17 chapters)
1
Part 1:Introduction to Neural Networks
5
Part 2: Deep Neural Networks for Computer Vision
8
Part 3: Natural Language Processing and Transformers
13
Part 4: Developing and Deploying Deep Neural Networks

Classifying images with PyTorch and Keras

In this section, we’ll try to classify the images of the CIFAR-10 dataset with both PyTorch and Keras. It consists of 60,000 32x32 RGB images, divided into 10 classes of objects. To understand these examples, we’ll first focus on two prerequisites that we haven’t covered until now: how images are represented in DL libraries and data augmentation training techniques.

Convolutional layers in deep learning libraries

PyTorch, Keras, and TensorFlow (TF) have out-of-the-gate support for 1D, 2D, and 3D convolutions. The inputs and outputs of the convolution operation are tensors. A 1D convolution with multiple input/output slices would have 3D input and output tensors. Their axes can be in either SCW or SWC order, where we have the following:

  • S: The index of the sample in the mini-batch
  • C: The index of the depth slice in the volume
  • W: The content of the slice

In the same way, a 2D convolution will...