Book Image

Hands-On Genetic Algorithms with Python

By : Eyal Wirsansky
Book Image

Hands-On Genetic Algorithms with Python

By: Eyal Wirsansky

Overview of this book

Genetic algorithms are a family of search, optimization, and learning algorithms inspired by the principles of natural evolution. By imitating the evolutionary process, genetic algorithms can overcome hurdles encountered in traditional search algorithms and provide high-quality solutions for a variety of problems. This book will help you get to grips with a powerful yet simple approach to applying genetic algorithms to a wide range of tasks using Python, covering the latest developments in artificial intelligence. After introducing you to genetic algorithms and their principles of operation, you'll understand how they differ from traditional algorithms and what types of problems they can solve. You'll then discover how they can be applied to search and optimization problems, such as planning, scheduling, gaming, and analytics. As you advance, you'll also learn how to use genetic algorithms to improve your machine learning and deep learning models, solve reinforcement learning tasks, and perform image reconstruction. Finally, you'll cover several related technologies that can open up new possibilities for future applications. By the end of this book, you'll have hands-on experience of applying genetic algorithms in artificial intelligence as well as in numerous other domains.
Table of Contents (18 chapters)
1
Section 1: The Basics of Genetic Algorithms
4
Section 2: Solving Problems with Genetic Algorithms
9
Section 3: Artificial Intelligence Applications of Genetic Algorithms
14
Section 4: Related Technologies

The theory behind genetic algorithms

The building-block hypothesis underlying genetic algorithms is that the optimal solution to the problem at hand is assembled of small building blocks, and as we bring more of these building blocks together, we get closer to this optimal solution.

Individuals in the population who contain some of the desired building blocks are identified by their superior scores. The repeated operations of selection and crossover result in the better individuals conveying these building blocks to the next generations, while possibly combining them with other successful building blocks. This creates genetic pressure, thus guiding the population toward having more and more individuals with the building blocks that form the optimal solution.

As a result, each generation is better than the previous one and contains more individuals that are closer to the optimal...