Book Image

Data Engineering with Python

By : Paul Crickard
Book Image

Data Engineering with Python

By: Paul Crickard

Overview of this book

Data engineering provides the foundation for data science and analytics, and forms an important part of all businesses. This book will help you to explore various tools and methods that are used for understanding the data engineering process using Python. The book will show you how to tackle challenges commonly faced in different aspects of data engineering. You’ll start with an introduction to the basics of data engineering, along with the technologies and frameworks required to build data pipelines to work with large datasets. You’ll learn how to transform and clean data and perform analytics to get the most out of your data. As you advance, you'll discover how to work with big data of varying complexity and production databases, and build data pipelines. Using real-world examples, you’ll build architectures on which you’ll learn how to deploy data pipelines. By the end of this Python book, you’ll have gained a clear understanding of data modeling techniques, and will be able to confidently build data engineering pipelines for tracking data, running quality checks, and making necessary changes in production.
Table of Contents (21 chapters)
1
Section 1: Building Data Pipelines – Extract Transform, and Load
8
Section 2:Deploying Data Pipelines in Production
14
Section 3:Beyond Batch – Building Real-Time Data Pipelines

Cleaning data using Airflow

Now that you can clean your data in Python, you can create functions to perform different tasks. By combining the functions, you can create a data pipeline in Airflow. The following example will clean data, and then filter it and write it out to disk.

Starting with the same Airflow code you have used in the previous examples, set up the imports and the default arguments, as shown:

import datetime as dt
from datetime import timedelta
from airflow import DAG
from airflow.operators.bash_operator import BashOperator
from airflow.operators.python_operator import PythonOperator
import pandas as pd
default_args = {
    'owner': 'paulcrickard',
    'start_date': dt.datetime(2020, 4, 13),
    'retries': 1,
    'retry_delay': dt.timedelta(minutes=5),
}

Now you can write the functions that will perform the cleaning tasks. First...