Book Image

Data Engineering with Python

By : Paul Crickard
Book Image

Data Engineering with Python

By: Paul Crickard

Overview of this book

Data engineering provides the foundation for data science and analytics, and forms an important part of all businesses. This book will help you to explore various tools and methods that are used for understanding the data engineering process using Python. The book will show you how to tackle challenges commonly faced in different aspects of data engineering. You’ll start with an introduction to the basics of data engineering, along with the technologies and frameworks required to build data pipelines to work with large datasets. You’ll learn how to transform and clean data and perform analytics to get the most out of your data. As you advance, you'll discover how to work with big data of varying complexity and production databases, and build data pipelines. Using real-world examples, you’ll build architectures on which you’ll learn how to deploy data pipelines. By the end of this Python book, you’ll have gained a clear understanding of data modeling techniques, and will be able to confidently build data engineering pipelines for tracking data, running quality checks, and making necessary changes in production.
Table of Contents (21 chapters)
1
Section 1: Building Data Pipelines – Extract Transform, and Load
8
Section 2:Deploying Data Pipelines in Production
14
Section 3:Beyond Batch – Building Real-Time Data Pipelines

Summary

In this Appendix, you learned the basics of NiFi clustering, as well as how to build a cluster with the embedded Zookeeper and how to build distributed data pipelines. NiFi handles most of the distribution of data; you only need to keep in mind the gotchas – such as race conditions and the fact that processors need to be configured to run on any node. Using a NiFi cluster allows you to manage NiFi on several machines from a single instance. It also allows you to process large amounts of data and have some redundancy in case an instance crashes.