Book Image

Unity 5.x Game AI Programming Cookbook

By : Jorge Palacios
5 (1)
Book Image

Unity 5.x Game AI Programming Cookbook

5 (1)
By: Jorge Palacios

Overview of this book

Unity 5 comes fully packaged with a toolbox of powerful features to help game and app developers create and implement powerful game AI. Leveraging these tools via Unity’s API or built-in features allows limitless possibilities when it comes to creating your game’s worlds and characters. This practical Cookbook covers both essential and niche techniques to help you be able to do that and more. This Cookbook is engineered as your one-stop reference to take your game AI programming to the next level. Get to grips with the essential building blocks of working with an agent, programming movement and navigation in a game environment, and improving your agent's decision making and coordination mechanisms - all through hands-on examples using easily customizable techniques. Discover how to emulate vision and hearing capabilities for your agent, for natural and humanlike AI behaviour, and improve them with the help of graphs. Empower your AI with decision-making functions through programming simple board games such as Tic-Tac-Toe and Checkers, and orchestrate agent coordination to get your AIs working together as one.
Table of Contents (15 chapters)
Unity 5.x Game AI Programming Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Learning to use Naïve Bayes classifiers


Learning to use examples could be hard even for humans. For example, given a list of examples for two sets of values, it's not always easy to see the connection between them. One way of solving this problem would be to classify one set of values and then give it a try, and that's where classifier algorithms come in handy.

Naïve Bayes classifiers are prediction algorithms for assigning labels to problem instances; they apply probability and Bayes' theorem with a strong-independence assumption between the variables to analyze. One of the key advantages of Bayes' classifiers is scalability.

Getting ready…

Since it is hard to build a general classifier, we will build ours assuming that the inputs are positive- and negative-labeled examples. So, the first thing that we need to address is defining the labels that our classifier will handle using an enum data structure called NBCLabel:

public enum NBCLabel
{
    POSITIVE,
    NEGATIVE
}

How to do it…

The classifier...